root lattice vertex algebras 根格顶点代数
vertex operator algebras 顶点算子代数
Generalized vertex operator algebras 广义顶点算子代数
The development of vertex algebras involved many branches of mathematics and physics, particularly modular function, Lie algebras, the classification of finite groups and string theory.
顶点代数的发展涉及物理和数学中的很多分支,然而不得不提及的模函数,李代数,有限群的分类以及弦论四个理论是其发展的基础。
参考来源 - 顶点代数发展及在镜像对称中的应用的综述·2,447,543篇论文数据,部分数据来源于NoteExpress
In this paper, some properties of semisimple generalized vertex algebras (resp. semisimple generalized vertex operator algebras), for example the decompositions of these algebras;
讨论了半单广义顶点代数(相应地半单广义顶点算子代数)的若干性质,例如:这些代数的分解;
The theory has evolved to describe the relationship between finite groups, modular forms and vertex operator algebras.
理论已经逐步形成描述在有限群,标准化的形式和顶点算符代数之间的关系。
应用推荐